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This article investigates the gain in signal-to-noise ratio that may be realized by using
redundancies inherent in TV data to modify the decoding metric of the DSN Viterbi
decoders. This modification would take into account the memory in a TV scan line to
change the transition probabilities as originally computed using independent data. The
resulting data rate gain or error probability decrease is achieved without requiring any
spacecraft modifications or additions. A preliminary examination of this concept on a
binary symmetric channel rather than a Gaussian channel and using a simplified Markov
source model involving two-level or hard-clipped TV shows that very substantial decreases

in ervor probability may be achieved.

l. Introduction

Viterbi decoding for the case where binary messages from a
memoryless source are transmitted over a memoryless channel
implements maximum likelihood (ML) decoding. In this case,
this is equivalent to maximum & posteriori probability (MAP)
decoding since all messages are equally likely. However, when
the source has memory, such as for video, ML decoding, and
hence the Viterbi decoding algorithm, as it is usually imple-
mented, is not optimal. For such cases work has been done
(see, e.g., Ref. 1) on encoding the source before transmission
and then using a source decoder at the receiver. This method
utilizes the channel more efficiently. However, in cases where
the transmitter complexity needs to be minimized, such as
when it is on a spacecraft, it is sometimes undesirable to have a
source encoder, which may be a complex piece of equipment.
In such a case, it could be worthwhile modifying the Viterbi
decoder at the receiving end so as to increase the transmission
rate, while leaving the transmitter untouched.

In the present work, we consider the simple case of a
Markov source of arbitrary order S, and a memoryless channel,
and show how to modify the metric in the Viterbi decoder to
implement MAP decoding. Calculations of bit error probability
(BEP) for a decoder using this new metric become message-
dependent. An upper bound on the BEP can be obtained for
any given message by a method to be described, but elegant
bounds similar to those in conventional Viterbi decoding (see,
e.g., Refs, 2 and 3) are only possible for a few messages, and
these are derived. An upper bound on overall BEP has also
been similarly derived for low-entropy sources. For a specific
K =3 constraint length code, computer simulations of the
decoder for a first-order Markov source and a binary symmet-
ric channel (BSC) indicate that the BEP with the new metric
are lower than the BEP with the conventional metric, as
predicted, with the improvement being more noticeable at
rates well below channel capacity. However, many more runs
of these simulation programs are needed to determine more
exactly the extent of the improvement for various parameters.

97



Also, we are interested in the Gaussian channel and not the
binary symmetric channel for which the simulations in this
work have been done.

It has been observed that the Viterbi algorithm (VA), in its
most general form, is “a solution to the problem of MAP
estimation of the state sequence of a finite-state discrete-time
Markov process observed in memoryless noise” (Ref. 4). But
the Viterbi Algorithm does not seem to have been used as a
MAP estimator in the context of decoding convolutionally
encoded messages from a Markov source. It has, however, been
used in the problem of text recognition (Refs. 5 and 6). Also,
error bounds like the ones given here, for cases where the
source has memory, do not seem to have been obtained, nor
are there available comparisons between the MAP and ML
estimator applications of the VA to decoding problems for
sources with memory.

ll. The New Metric
A. Definition for a BSC

Consider a BSC with channel error or transition probability
p, and a convolutional code of constraint length K, where b
bits are transferred at a time into the encoder and n symbols
are output at a time (i.e., a rate b/n code). Here, “at a time”
means at each clock pulse. There are bK bits in the encoder
register.

A Markov source, which we define below, is a simple
example of a source with memory. A Markov source of order S
is defined as one having the property that the probability
distribution of the n'® bit it outputs (for n > S) depends only
on the values of the previous S bits output. That is, if the

sequence of bit output by the source is {uyuy, oo, )
then for n>.S, the conditional probability p(u, lu, ... . u,)
can be expressed as
plu fu, (.u) =plulu, ... su, o) (la)
A symmetric first-order Markov source has
LA
p(110) =p(0[1) = p (1b)
and
A
p0I0)=p(1I1)=q =1~ p, (Ic)

Here p_ is called the source transition probability. In this
paper, whenever we refer to a first-order Markov source, we
mean this symmetric one.
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We first consider a Markov source of order S < 5K - 1, and,
for this case, we show that MAP decoding is achieved by using
the Viterbi decoding algorithm with modified branch metrics
M,,; defined below. Each branch defines a transition out of a
state s involving 5(K - 1) bits to a new state ¢ uniquely defined
by the b incoming bits and the (K - 1) bits of state s. Thus, if
the Markov source memory extends over fewer than 6K previ-
ous bits, there is a unique a priori probability p, , of occur-
rence of each branch in the state diagram given by Eq. (2b)
below.

If S>bK- 1, we can follow exactly the same decoding
procedure with the metrics which we define below, with the
exception that the state diagram and the trellis diagram for the
decoder now have 2(5-2%1) states, with each state represented
by (S - b + 1) bits rather than 26(K=1) gtates, each repre-
sented by b(K - 1) bits. (Each node will, as usual, have 2°
branches merging at it and 2% branches emanating from it.)
However, since S~ b+ 1> b(K- 1) for S > bK - 1, this
increases the decoder complexity. So, if b is small, we might as
well increase K, which increases the encoder complexity only
slightly, but reduces BEP considerably. Thus, it may often be
worthwhile choosing b, K, § such that § < bK - 1 holds, if
some other constraints are not violated in doing so. If b is
large, however, increasing K even by 1 increases the number of
states by a factor of 2%. This may increase the decoder
complexity much more than if we were to keep K fixed and
have 2(8-2%1) states in the decoder to take care of the source
memory S being greater than 6K - 1.

The branch metric of conventional Viterbi decoding for the
i™h branch of the m'" possible path through the trellis is -d,,;
where d, ; is the Hamming distance between the n-dimensional
code subvector for the branch and the corresponding n-dimen-
sional received subvector (see Ref.2). We define the new
metric as

c=-d .
mi mi

p,,,; can be written as the conditional probability

Prpi = POt Uyl ) (2b)

fotr an S'h order Markov source, where u,, ; is the ith bit of the
m  possible message of block length B. Note that m runs
from O to 28 - 1. We assume throughout that B >> K, and
that the last 5(K - 1) bits transmitted are always 0.



B. Definition for an Arbitrary Memoryless Channel

The conventional branch metric M, ; for the i*h branch of
the mth path is the logarithm of the conditional probability of
the ith received subvector (Ref. 2):

M, =Inp(V%,,) 3)

mi

where X, ; is the n-dimensional code subvector of the mth
message sequence for the ith branching level, and ¥, is the
corresponding n-dimensional noisy received vector. The modi-

fied metric in this case is

M,zi = lnp(yilfmi)+lnpmi (4)

ni
where p_ . is defined in Eq. (2b).

C. Derivation of New Metric

We now derive the new metric defined above for the case
where the source memory is S.

Let {u,,,, ... u,, }be the m*h possible message sequence
of block length B. Then the a priori probability of the se-
quence {U,, ... U, ptis
p(m)=p(u, -, p)

U 35y PW g1y U (5o,

:p(umBlum(Bwl)’ t

Uy (B—S—l)) o 'p(umllumo’ U (G2 ) um(1~S))

:meme~l ’ "pml (53)
where p . is defined as in Eq. (2b), and we define

{”mo’“m(—l)’ e um(l_s)}= {0,0,...,0} (5b)*
Then the MAP decoder should choose that B-bit block corres-
ponding to message m that has the maximum a posteriori
probability given by

B
- Y10
Pap |i:|1 PO =, 5y (6)

*Alternatively, we may take care of the initial bits by defining Ppis -+ =
P,y,s ach to be 0.5.

where p(m) is given by Eq. (5), X,,,;, 7, have the same meaning
as in Eqg. (4), and p(3) is the probability of receiving y. This
probability is constant for all messages m, and hence can be
dropped from the maximization; or, equivalently, we can
maximize the log of this probability (after dropping p(¥)), i.e.,

B

inp, =3 In{p@Jx, )+ pm)} (D)

i=1

{Inp(fx, )+ np,,,} ®)

e

~
1l
—_

From this it follows that the branch metric for the ith branch
of the m'™ message path is given by Eq. (4). For a BSC with
transition probability p,, we can further simplify Eq. (4) using
the fact that (Ref. 2)

PYN vy = dmi n_dmi
p(ix, ) =p, " (1-p,) )

Thus, Eq. (4) becomes

e) +nin(l- p€)+1npmi
(10)

Or, dropping the »n In (1 - p,), which is constant for alt
branches, and dividing by

l-p
ln( e)
P,

we get

mi mi+ 1_p (11)
ln( e)

which establishes Eq. (2a).

lll. Error Probability Bounds With
New Metric

We now derive upper bounds on the probability of error
with the new metric in a manner paralleling the derivation of
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Eq. 4.4-8 of Ref. 2, which is repeated as Eq. R1 below:

Eln,()] < i i‘ ia(d,)Z¢ (R1)

i=1 d=d
f

where E[n, (/)] is the expected number of bit errors caused by
an incorrect path diverging at node j; a(d,i)is the number of
paths diverging from the all-zeros path (at node j) at distance d
and with 7 “1’s” in its data sequence over the unmerged
segment; d, is the minimum distance of any path from the
correct one, called the free distance; and Z is defined in Eq.
(R2):

Z2= % Vpip0) (R2a)
y

Here p(y), po(y) are the probabilities of receiving a given
value of a bit y when the corresponding transmitted bit is a 1
or a 0, respectively. For the special case of a BSC, Z reduces to

Z=NEp 1 p,) (R2b)

A. Extension of the Bhattacharya Bound

We first extend the Bhattacharya bound to the case in
which MAP detection occurs rather than ML detection.

If p,(m ~ m') denotes the probability that message m' is
decoded when message m is sent and only two alternatives (m
and m') exist, and if x,, is the signal vector sent and y the
one received, and if?c’,'n is the other possible signal vector, then
the Bhattacharya bound states (Eq. 2.3.15 of Ref. 2) that

ppm ~m') < 25 pOIX ) p(Tx,) (R3)

We now extend this bound to the case of MAP detection. We
have

pplm>m’) = 37 pOix,) (12a)
)‘/EAmm’
where
p,, PIx, )
A =y > (12b)
mim pm p()—/lxm)
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or
A = 25 TO)PGIR,) (13)
v
where
1, for yEAmm,
) = (14)
0, otherwise
Now

o p(vIx. )
1< /A ,foryE/\mm,
p,, p(VIx, )
P pOlx )
0 < pm p@,,an) , otherwise
m

m

) = (15)

where the first part of the inequality follows from the defini-
tion of A,,, ,,» and the second is trivial.

Thus, for all y,

)< fRTORLT .
fy) < P pGIx) (16)

Using this in Eq. (13) gives

pp(m—>m') < > \/%P(J_/!x;n)l?@lxm) (17)
)7 m

Thus, the only difference between this inequality and the
corresponding one for ML decoding (Eq. R3), i.e., the usual
Bhattacharya bound, is the extra factor\/?,;l/pm in Eq. (17).
This bound is tighter than the usual Bhattacharya bound
whenever the decoded message m' is less probable than the one
sent, m, i.e., if

!

p, s<p,...(17)

m

B. MAP Decoding Error Bound

This bound is derived using the union bound and the
extended Bhattacharya bound (Eq. 17). The fact that the a
priori probabilities of the various possible messages are un-
equal changes the locations of the MAP receiver decision



boundaries in signal space but the expression for the union
bound is unchanged. Thus, we get, for the message m actually
being sent, that the total probability of error considering all
other possible messages is

Ppm < 2 Pelm=m) (18)

m'#=m

<y ¥ S ote,)

;i"—p(?lfm,)p(?lfm) (19)

y m¥Fm m

after using Eq. (17).

Now for memoryless channels we can show that (see
Appendix)

pp(m—>m') <

p

m

2 ﬂz“’nzm'
2

m

LI S SRR TN I
>

(20a)

where w,, .+ is the Hamming distance between messages m
and m’, and p,(»), po(v) are the probabilities of receiving a
given value of a bit y given that the corresponding transmitted
bitisa 1 or O, respectively. Here

A
z% 3 Np,0p,0) (20b)
y
which, for the special case of a BSC, reduces to
Z=Zy. =Va4p,(0-p) (20c)

We now apply these equations to the calculation of upper
bounds on event and bit error probabilities. We know that a
necessary condition for an event error to begin occurring at
node j is that an incorrect path diverging from the correct one
at node j accumulates higher total metric than the correct one
over the unmerged segment. If we denote by I the set of all
such incorrect paths when the input message is m, using the
union bound as in Eq. (18), we get, for the probability of an
event error occurring at node j with m input,

m S Yem!
p;(elm) < Z N
meTl

m

P, wo
< Q. fmzmm (1)
m'#Fm pm

In the second inequality above, the summation is over all
m' #m.

We can bound the probability of bit error for the input
message m, p(blm), by weighting each of the terms in the sum
in Eq. (21) by the number of bit errors i, , + occurring in
choosing that incorrect path m’, i.e.,

w ’
pblm) < Y p—’"imm,z mm 22)
m'#Em m

Accounting for all possible transmitted messages », the overall
BEP is given by

p,(MAP) = >~ plm)p,,

m

< Z Z mimm’zme' (23)

’
m m #Fm

Equations (22) and (23) can, in theory, be evaluated for a
specific code, but, except for certain cases, as in those of
Subsection I11-F, are very cumbersome in practice.

We cannot make further simplifications in Egs. (22) and
(23), directly at least, as we can in the usual ML decoding case,
because each sum in the bound in Eq. (22) depends on the
particular message m and the incorrect message m'. For certain
specific messages m it is possible to extend the generating
function method (as we do in Subsection UI-F) to obtain
elegant expressions for p(blm), but that is not sufficient to
enable calculation of the overall BEP p,(MAP), since all mes-
sages do not have the same error probabilities.

C. Comparison of MAP and ML Decoding
Error Bounds

If the usual Viterbi or ML decoding were used for the same
system, we would have, for the bit error probability given that
message m is sent,
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w s
pbim) < 2, Z ™

m'#=m

(24)

where w,,,,.» and i, + are the same as in Eq. (22). The overall
BEP would be

p,ML) = 3 p(lmp,,

m

w '
Y pi . Z m" (25)
m

!
m #m

Now Eq. (23) and Eq. (25) both involve a double summation
over all possible pairs of messages m, m'. We compare these
term by term. Consider a pair of messages m, and m, with
probabilities pp, |, Ppm,. Their contributions to the sums in
Egs. (23) and (25) are

- B my
CMAP_Z 1m1m2 \/pmlpm2+\/pm1pm2
w m
= 2ﬁmlpm Z 1 2lm m2 (26)
and
- Ymymy
CML (pml-*_pm2 z lm m (27)
Comparing Eqs. (26) and (27), we see that
Cuar SCy1 (28)

for all p,, {, P,,,,, With equality holding forp,,, =p,,,. Thus,
we get

(MAP) error upper bound < (ML) error upper bound 29)

Since the upper bounds in Egs. (23) and (25) are asymptoti-
cally tight, we expect from Eq. (29) that, for low BEP where
the bounds are close to the actual error probabilities, the new
metric is better than, or as good as, the conventional one.
Also, on general principles, we know that MAP decoding is
always at least as good as ML decoding.
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D. Approximate Magnitude of improvement
Expected From Upper Bound Expressions

From Egs. (23) and (25) we may obtain an order-of-
magnitude estimate of the improvement in BEP using MAP
decoding. We assume a low enough BEP so that the actual BEP
is replaceable by the upper bounds in Egs. (23) and (25). Since
the BEP is low, we must have Z small, so that the terms in Egs.
(23) and (25) with factors Z¥mm' where w,, . is greater
than the free distance d, of the code, are negligible compared
to the terms with factors Z97. Thus, we may retain only these
terms and have

p, (ML)
Py (MAP) -

= (30)

where I" is the set of path pairs m, m' with Hamming distance
equal to d, between them.

Further simplification is possible only if we know the
probabilities of the message pairs that are at the free distance
from each other and this is specific to the code and the source.

E. Further Approximation for First-Order
Markov Source

In this section we make an order-of magnitude estimate of
the improvement in BEP for the specific case of a first-order
Markov source with low transition probability p_. For such a
source with low p, there is a lot of redundancy in the message
output, and we may expect the MAP method to be most
useful in this case. In making our estimate of the improvement
in BEP in this section, we make the following assumptions:

(1) We assume that the most probable message transmitted,
m,, has an a priori probability so close to | that the
overall BEP p,(MAP) may be closely approximated by
the BEP givenm |, p(b|m).

(2) Given that an error is made in decoding this message
m,, we assume that the BEP given m  can be
calculated by considering only those possible erro-
neously decoded messages that are closest in distance
to m, . In doing this, we are again using the arguments

leading to Eq. (30) in Subsection I1I-D.



(3) Among these closest-distance erroneous messages, we
further restrict our attention to the one that has the
highest a priori probability. There may be more than
one such message possible but we ignore this small
factor in getting our order-of-magnitude estimate.

Thus, assumption (1) enables us to consider only one
transmitted message m, and assumptions (2) and (3) enable us
to narrow down the set of possible erroneously decoded
messages (given that m, is sent) to only one message, which
we call m, .

Since the first-order Markov source has a low transition
probability p., the most probable messages it puts out will
consist of long strings of zeros and long strings of ones with
occasional (with probability p,) transitions from one type of
string to the other. We now make the following assumption:

(4) We assume that the most probable message 7, has long
enough runs of zeros and ones that we can replace it,
for the purpose of calculating BEPs, by one with no
transitions at all, say, the all-zero message.

Now the messages closest to m, will differ from it in only a
small number of bits (like 1 or 2 depending on the specific
code). We can see that the most probable of these, ie., m,,
will have at least 2 transitions in it. For instance, the relevant
portions of 7, and m, may be -000- and -010-, or -0000- and
L0110-, Thus, for the specific code discussed in Section IV, if
an error occurs in decoding a portion -000- of a message, and if
the erroneously decoded message is at the free distance from
the correct one, it occurs because -000- is decoded as -010-,

We may now calculate the improvement in BEP considering
only the messages m, and m,. For symmetry, we include in
p,(MAP), both p(blm,) and p(blm,), where the conditional
bit error probability for each message is calculated assuming
the other one as being the erroneously decoded message. We
do this using the method of Subsection II1-D, and get

p, (ML) Pt Y Pma

p, (MAP) ~ e (31)
Defining
a5 = 1-p; (32)
this becomes
R (33)

- o~ — +
p,(MAP)  2p_ 2q

For instance, if p, = 1073, we have from Eq. (33),

old BEP

ew BED 499.5 (34)
Thus, there is about a factor of 500 improvement in BEP in
this case using the new metric.

F. Generating Function Method for Low pg Case

In this section, we show how to calculate the improvement
in BEP more exactly than we did in Subsection III-E. The
method to be described holds for all p, if the only message
considered is the all-zeros or the all-ones message and also
possibly for certain specific messages depending on the code.
For low p,, the most probable messages consist of strings of
zeros and ones with occasional transitions between strings so
that this analysis holds for most of the probable message
sequences.

We have for 2 messages m, m’,

' P’ S mm’
ppm—=>m) < N Z (20)
m

which differs from the corresponding equation for the
conventional decoder only in the factor  Dp'IP,, - Here, p,
is the probability of the transmitted message sequence in
consideration and p'm is the probability of the erroneously
decoded message m'. We can express p,, and p, using Eq. (5)
for the special case of the first-order Markov source as

P = PmBPm-1)"" Pm1 (35)
Py :pm'Bpm'(B—l)'“pm; (36)
where
Pj =P (“mi'“m(/’—l)) (352)
P, =P (um,jlum,(i_l)) (362)
So we have
' w ! pm’B m'1
ppm—-m) <z ™mm (37)
me m1

We can then rewrite Egs. (21) and (22) as
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pielm) <

m'£=m

22y

Now each of the factors \/ p,,;/p,; in Eq. (37) corresponds
to a particular branch in the trellis, If the input message is such
(e.g., the all-ones or the all-zeros message) that all possible
incorrect paths can be accounted for by tracing varying
numbers of loops on a diagram obtained by opening up the
state diagram at some node, then we know that all the paths at
various distances from the correct one can be expressed by
terms of the series expansion of the generating function 7(D)
(§4.3 of Ref. 2). Here, D has the usual meaning that its
exponent for any branch represents the distance of that
branch from the corresponding code subvector of the input
message. In-order to weight each of these terms by the factor
VP,ilP s 2ll we need to do is to associate with each
branch of the opened-up state diagram the appropriate factor
\ Pm'ilP; and then evaluate the resulting generating func-
tion which we denote by T, (D). We then set D = Z in the
expression T, (D) to evaluate the bound in Eq. (21).
Similarly, to get the bound in Eq. (22)', we obtain the
generating function 7, (D,f), where I has the usual meaning
that /=1 for a given branch if its bit differs from the
corresponding bit in the input message and I =0 otherwise,
and we set D=2,/ =1 in 37,,/0I (D,]) to evaluate the bound
in Eq. (22)’. This generating function method allows us to take
into account all possible erroneous paths and their error
contributions rather than just one as in Subsection III-E.

In the special case of the first-order Markov source, we get
an even simpler expression for event and bit error probability
bounds. Each of the p, ; and p,,, is either p, or q in this
case. So each term in the sums in Egs. (21)" and (22)' has a
factor of M¥ evaluated at M = VP,/q,, where k is an integer.
This integer can be determined as follows. We first associate
with each branch of the opened-up state diagram either M or 1
or M~1, depending on whether Pn'ilPmi = Pglqgor 1 orqg/p,
for the particular branch. Thus, for the all-zeros or the all-ones
message, we write M for branches corresponding to a transition
in the message and 1 for branches with no transition, since in
these cases, p,,,; is always equal to dgand p, ., can be either p,

or q,. We then evaluate the transfer function 7(D,M) (this
takes the place of the transfer function T,,(D) we had in the
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previous paragraph for the higher order Markov cases) and the
transfer function T(D,M,]) (to take the place of T,,(D,I) of
the previous paragraph). We can then see that the event error
probability at any node, say, /, is given by

plelm) < T(D,M) - (38)
M= /5
q.Y
D= Z
and the BEP given m is given by
oT
pbim) < = (D,M,I) (39)
D=2z
I =1
pS
M = —
AV s

[t is not easy to generalize these results to get the overall
BEP considering all possible messages, because the functions
T,,(D), T, (D) here are message-dependent unlike the usual
Viterbi decoding case. Thus, for non-repetitive messages, a
general expression like those in Eqs. (38) and (39) that
identifies all other possible paths and their error contributions
are not easy to obtain. A slight generalization of one method is
possible for repetitive messages like, say, ... 1000, 1000,
1000 . .. for the code considered in the next section, by open-
ing up, not just one node, but a path in the state diagram cor-
responding to the message unit repeated. But even in this case,
it is necessary to consider each possible erroneously decoded
message individually and obtain its contribution to the BEP.

As we have stated before, if p is low, then just considering
the all-zeros or all-ones message should be good enough to
obtain an estimate of the overall BEP.

IV. lllustration With a Specific Code
A. The Code

We assume a BSC, a first-order Markov source with
transition probability p; and a specific K =3,b = 1,5 =2 (rate
1/2) code. The encoder is shown in Fig.1, and the state
diagram is shown in Fig. 2. Bits come in at the left in Fig. 1
and the states (written in boxes at the nodes in Fig. 2) are
represented by the rightmost 2 bits of the encoder. The dotted
and solid lines in Fig. 2 correspond to a 1 and a O input bit,
respectively.



B. Calculations

The state diagram with the 00 node opened up and the
branches marked with the appropriate powers of D,LM are
shown in Fig. 3. This diagram thus corresponds to the all-zeros
input message.

The generating function is

D3 IM?
TDIM) = ————— (40)
1 - DI - DIM?
so that the BEP given m=...00 .. .1is
oT
< _
pOIMyp <737, _ |
Ve
M = —_—
qS
D = Z
D3M?
= 3 (41a)
(1- D- DM?) 5
5
M = -
qS
D = 2Z
—DSM {1+2D(1 +M¥)+3D2(1 + M2)
+4D3(1 + M2 4 .
M = —
G
D = Z
(41b)

For the case of the conventional ML decoder, we would
obtain a similar expression with M = 1,i.e.,

DS
pbim),, <— . (422)
(- 2D) D=7
< DS {1+ 2D-2+3D7 -22+4D3-23+---}‘D:Z
(42b)

The expansion of Eq. (41b) shows that the path with
minimum distance (=5) has 2 transitions and one bit error,
corresponding to the term D3M?; of the two paths with
distance 6, one has 2 transitions and the other 4, and each of
these has 2 bit errors corresponding to the 2D5 « M2 - D(1 +
M?) term, and so on.

From the expansions of Egs. (41b) and (42b), we see that if
M2 <1, ie.,

p <05 (43)

the bound of Eq. (41b) is smaller than that of Eq. (42b) by a
factor of more then M2, since each term in the brackets in Eq.
(41b) is smaller than the corresponding one in brackets in Eq.
(42b).

In our example, we assume M? <1. If we assume the
bounds in Egs. (41) and (42) to be close to the actual BEP
because of our p, <<1 assumption, there is an improvement
in BEP by more than a factor of M2 = p /q . Thus, forp, =
0.1, we have that the new BEP is lower than the old BEP by at
least a factor of 1/9.

For the all-ones input message, the 11 node can be opened
up. If the details are worked out, we obtain, as expected,
exactly the same expression as in Eq. (41).

C. The Simuiations

We simulated the encoder and decoder for the code
described above and ran several messages of 298-bit block
lengths for various sets of parameters p, and p,, with both p,
p, <0.5. Initially, we checked the program with just a block
of zeros or just a block of ones as input and, later, generated
the input messages themselves within the program by including
a simulation of the Markov source. In this case the input
messages are realistic ones and were found to consist of strings
of zeros and ones as expected. The simulations show that the
BEP with the new metric is always lower (for p,, p, <0.5)
than with the conventional metric. But a larger number of
simulations would be needed to obtain the exact amount of
improvement, especially for the cases with low BEP. However,
the results shown in Table 2 clearly demonstrate the improve-
ment. We also see that for low enough p,, the improvement in
BEP is by a factor > p /q,, as predicted by Egs. (41) and (42).

Another fact that was indicated by the simulations (see
Table 1), but which again needs further verification, is that the
decoder with the new metric needs a trellis truncation depth
of at least 20 constraint lengths for negligible truncation error,
as opposed to the 5 constraint lengths required for the old
decoder (Ref. 3). The truncation scheme we are talking about
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here is the simpie one described in §4.7 of Ref. 2, in which, as
each set of b bits enters the registers of each state, the b bits
which entered 20K branches earlier are removed, after the
decoder has made a final decision on these bits by setting them
equal to the appropriate survivor bits of an arbitrary state. In
obtaining the results described in Table 2, we used a 40K
truncation length rather than 20K, to be on the safe side.

D. Channel Capacity Limitations

From the results of the simulations (Table 2) we see that
for given p_, if the probability of channel transition p, is high,
the BEP is high for both the new and the old decoding
algorithm, and the ratio of the new BEP to the old BEP
increases with p,. Similarly, for a given p,, this ratio increases
as p increases. For the given source and channel, we can
calculate the source entropy and the channel capacity, which
are given, respectively, by

Hp) =-plog,p - (1-p)log, (1-p) (44)

and

Clp,) = 1-H(p,)

L+p log, p, t(1-p)log, (1-p,)  (45)

Figure 4 shows the nature of these two curves, on the same
plot for convenience.

Since the channel capacity represents the upper limit on the
reliable communication rate, we should expect that no scheme

would allow any substantial reduction in BEP above channel
capacity. Thus, if we set

Hpy) < Cp,) (40)

we can get the outer limits on the regions of p, and p within
which the new scheme can be expected to be useful.

We need, from Egs. (44) through (46),

-p,log,p, - (1-p,)log, (1-p,)-p_log, p

N

~(l-pylog, (1-p)<l (47)

or

) -p)" ") 1-p)" T =05 (@s)
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Some sets of parameters p, and p, satisfying this relationship
with the equality sign are marked with an * in Table 2. Figure
5 shows a plot of old BEP, new BEP, and the ratio of new BEP
to old BEP obtained from simulations with the Markov source
model included in the program. Two sets of curves are shown:
one set has p. = 0.1 and p, varying, the other has p, =0.1 and
p, varying. Since an insufficient number of simulations were
made, however, the shape of the curve is not very reliable. But
it does show an increase of the ratio of new BEP to old BEP as
we approach and exceed channel capacity.

E. Comparison of Calculations and Simulations

None of the simulations were made for the very low values
of p, (like 1075 or 107¢) that would be required for the upper
bounds of Eqs. (41) and (42) to be approached, since too
many blocks of input would be required. Even for the case of
p,= 0.1 and p, = 0.03, which represents about the lowest data
rate to channel capacity ratio in the simulations, there were O
bit errors with the new decoder in the 10 blocks of 298 bits
used and only 1 bit error with the conventional decoder in the
same 10 blocks, corresponding to an old BEP of 0.000335,
and an even lower new BEP. Here the bounds of Egs. (41) and
(42) give, respectively,

p,(ML) < 0.046
(49)
p,(MAP) < 0.001

which are both much higher than the actual BEP obtained by
simulation. Hence direct verification of the bounds of Egs.
(41) and (42) has not been performed in the simulations, but
the bounds are probably very useful in calculating BEPs at
rates well below capacity where too many simulations would
be needed if computer calculation of BEPs were to be
performed.

V. Conclusions

We have shown that a simple modification of the metric
used in the Viterbi decoding algorithm achieves MAP decoding
for sources with memory. It can cause a noticeable reduction
in BEP for sources with strong correlation between bits (i.e.,
low entropy). Analysis methods to obtain upper bounds on
the BEP obtainable with the new metric have been given. The
simulations performed for a BSC and a first-order Markov
source verify that an improvement occurs, but to obtain the
exact ratio of improvement, more simulations are needed. We
can conclude, however, that the ratio of new BEP to old BEP
for a first-order Markov source and a BSC with very low p, is
atleast p /g, and that the extent of improvement reduces as
channel capacity is approached and exceeded. Simulations also



indicate that a trellis truncation depth of 20 constraint lengths
is probably needed for reliable results with the new metric.

The modification of the metric required for the case of an
arbitrary memoryless Gaussian channel is given. The entire
analysis given holds for such a Gaussian channel, but the
simulations of the decoder have been performed only for the
case of the BSC. Except in cases where the first-order Markov

source is specified, the analysis holds for any Markov source of
arbitrary order. More work is needed to extend the results to
more realistic sources like video data sources. Ultimately, the
aim is to devise a reasonably simple modification of the
Viterbi decoding algorithm that can make use of the correla-
tion between neighboring pixels in video data of scenes to
enable more efficient channel use than is possible with the
normal Viterbi decoder.

Acknowledgment

I would like to thank Dr. Edward C. Posner of the Jet Propulsion Laboratory,
Pasadena, for suggesting the problem and for his valuable comments and encouragement

throughout the work.

References

1. Mark, J. W., “Adaptive Trellis Encoding of Discrete-Time Sources with a Distortion
Measure,” IEEE Trans. Comm. Technol., Vol. COM-25, pp. 408-417, 1977.

2. Viterbi, A. J., and Omura, J. K., Principles of Digital Communication and Coding,

McGraw-Hill, NY, 1979.

3. Heller, J. A., and Jacobs, I. M., “Viterbi Decoding for Satellite and Space
Communication,” IEEE Trans. Comm. Technol., Vol. COM-19, pp. 835-848, 1971.

4. Forney, G. D., Jr., “The Viterbi Algorithm,” Proc. IEEE, Vol. 61, pp. 268-278, 1973.

5. Neuhoff, D. L., “The Viterbi Algorithm as an Aid in Text Recognition,” IEEE Trans.
Info. Theory,Vol. IT-21, pp. 222-226, 1975.

6. Rosenberg, A. E., and Schmidt C. E., “Automatic Recognition of Spoken Spelled
Names for Obtaining Directory Listings,” BSTJ, Vol. 58, pp. 1797-1824,1979.

107



Table 1. Simulations described in Subsection IV-C to estimate effect of trellis truncation (all runs here have p; = 0.1, p, = 0.4)

p i Truncation length, Number of 298-bit Conventional New Remark
rogram units blocks BEP BEP arks
01 10K 1 0.4866 0.5336 Programs 01 through 04 show
02 10K 1 0.4832 0.5537 j[hat 20K truncation length
is needed.
03 20K 1 0.4899 0.4698
04 30K 1 0.4899 0.4698 Same sets of random numbers
8 0.417 used for the source and
05 30K 3 0.5080 4170 channel in 04 as in 03; other-
06 40K 1 04765 0.2416 wise different sets used for
07 40K 1 0.5101 0.4060 different blocks of data for
both source and channel
08 40K 5 0.5000 0.3698 simulations.
Table 2. Simulations described in Subsection IV-C (all with truncation length 40K)
. . Ratio
Number of 298-bit Conventional New .
Program  p p blocks BEP BEP __ NewBEP Remarks
s e B Conventional BEP
1 0.1 0.4 5 0.5000 0.3698 0.7396 All runs have different
2 0.1 0.3 3 0.4508 0.2573 0.5708 sets of random numbers
for the source and
3 0.1 0.2 3 0.3367 0.09396 0.2791 different sets for the
4% 0.1 0.12 10 0.1117 0.02886 0.2583 channel.
5 0.1 0.08 12 0.02041 0.605593 0.2740
6 0.1 0.05 15 0.006714 0.0004474 0.0667
7 0.1 0.03 10 0.000335 0 0
8* 0.12 0.1 10 0.06146 0.013194 0.2147
9 0.05 0.1 5 0.07651 0.01342 0.1754
10 0.03 0.1 10 0.05570 0.002013 0.03614
11* 0.2 0.04 10 0.003691 0.001678 0.4546

*Means pyp, for that program define operation at channel capacity.
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Appendix

Simplifying the Extended Bhattacharya Bound for Memoryless Channel

We show here the derivation of Eq. (20) from Eq. (17) for a
memoryless channel. The method used is similar to that in
§2.9 of Ref.2. We have, from Eq. (17), since p(¥lx,,) and
p(Vlx,,) can be factored for a memoryless channel,

pplm—m) < 3 (17)
y

m

D

m' nB
= /Il X oG, )pbl, )
=1y

m

(Al-1)
where u,, ., i ; are the input bits corresponding to the code
subvectors xw, m'j> the sumin Eq. (17) runs over all possible
¥ vectors consisting of B n-dimensional subvectors, and the
sum over y in Eq. (Al-1) runs over the two possibilities 0 and
1 for each of these nB components.

We have

p;' nB
pE(m»m') < ;- n Z \/p(ylum].)p(ylum,j)
m j=1 y
(A1)

b I 3o, )i,

P jiu u
i m’j Ymp Y
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Il Z Vo0, ) PO, )

Jiu s=d
mj “mj

(here, u,,
written as

j = logical complement of um]-). This bound can be

P
21 Vvl e,

P )
] um] Mm] y

py(m—-m'") <

(A1-2)

since each sum in the first product in the previous equation is
equalto 1.

- ! . . .
Thus, if the messages m, m' differin w,, - bits, we get

w '
p mm

m 1 O
J o Zy; Vo1 p(y10)

[ Yinm'
f DRV ACING]

mm (20)

pp(m—>m'y <

ne

np>
E




